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Abstract-In fmding the quasi-steady state solution semi-numerical procedures can be advantageous. One 
such general method is illustrated by means of a heat flow problem with periodically contacting surfaces. 

The results are compared with those of an analogue study. 

NOMENCLATURE 

temperature difference; 
fixed temperature difference of one 
end of cylinder; 
distance along cylinder from this 
end ; 
length of cylinder; 
equivalent length of cylinder; 
time ; 
contact and separation times, re- 
spectively; 
thermal constants of cylinder and 
film, respectively; 

g(x), h(x), temperature distributions at 
instants of contact and separation: 

B(n), a(n), Q;(n), transforms of O(x), g(x), h(x) 
with In as transform parameter; 

O*(m), g*(m), h*(m), transforms with y, as 
parameter; 

s, number of intervals into which cylin- 
der is divided; 

g,, h, g(W, W/s) ; 
Cio> C, die, Dip constants derived in the text; 
C, D, s x s matrices of which C,,, D, are 

elements; 
co, d,,, s x 1 matrices of which ciO, d, are 

elements; 
P, 4, I, f, A, B, F, functions of the indepen- 

dent variable; coeffkients in the 
Sturm-Liouville theory; 

PLm’ d,, mth eigenvalue, eigenfunction respec- 
tively ; 

N*y mth norm: 

P, Q, constants of integration. 

INTRODUCTION 

THE TYPE of problem to be considered is one 
which is time dependent but in which, due to 
periodic external factors, the solution settles 
down to a periodic form which is then referred 
to as the quasi-steady state solution. In mathe- 
matical terms the same partial differential 
equation may represent the physical system for 
all time but the boundary conditions vary in a 
periodic manner which may or may not be con- 
tinuous. Since many cycles may be required be- 
fore the quasi-steady state is reached, numerical 
techniques alone may prove excessively long 
and may, in consequence, be inaccurate. If the 
engineering problem can be idealized in such a 
way that the only feature preventing an analyti- 
cal solution is the periodic nature of the boundary 
conditions, then the semi-numerical procedure 
to be outlined may be applied. 

To present the method as clearly as possible a 
one-dimensional heat flow problem is considered. 
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The idealized problem [l], which is not new, is 
simple to define but not simple to solve; the 
only solution at present available demands the 
use of a quite sophisticated analogue technique. 
Examples of the corresponding engineering 
problem are the heat transfer from the exhaust 
valve of an internal combustion engine to 
its seating, and between a work piece and die 
in repetitive hot metal deformation processes. 

THE HEAT FLOW PROBLEM 

In order to illustrate the method as simply as 
possible the heat flow is restricted to one di- 
mension. This is achieved by considering a 
solid cylinder of length 1 with a uniform cross- 
section whose boundary is insulated so that no 
heat is lost from the sides of the cylinder. One 
end is held at a constant temperature 00 above 
a body with which the other end of the cylinder 
makes periodic contact. This contact is supposed 
to be made through a film which presents a 
thermal impedance. 

Thus along the length x of the cylinder the 
temperature 0 satisfies 

a20 _ kde 
a2 et 

(1) 

and is subject to the boundary conditions: 
(i) at x = 0, 6 = B0 

(ii) if the cylinder is periodically in contact 
for a time T1 and separated for a time T,, then 
atx=1 

ae 
Kc= 0, i 

-cze, O<t<T, 

Tl < t < Tl + T2 

where k, a are thermal constants of the cylinder 
and film respectively. 

It will be appreciated that this problem in- 
cludes that of two identical cylinders periodically 
contacting through a thermal impedance and 
whose remote ends differ in temperature by 20,. 

Time is measured from the start of a cycle after 
the temperature has achieved its quasi-steady 
state. It is desirable to introduce two unknown 
functions g(x), h(x) which are respectively the 

temperature distributions at the instant of 
closure [t = n( Tl + T,), n = 0, 1, 2 . .] and 
separation [t = Tl + n(T, + T,)]. The objective 
now is to find g(x), h(x). Once these are known the 
general solution can be found. 

The differential equation (1) can be solved by 
the method of separation of the variables. This 
method involves a detailed knowledge of Fourier 
series and the amount of algebraic work involved 
can be greatly reduced by using the knowledge 
in the form of a finite integral transform [3]. 
Since moreover a reduction in manipulation 
leads to greater freedom from errors the latter 
method is adopted here. 

It is only necessary to consider the two intervals 
of one cycle, namely 

0< t < T,, Tl < t < Tl + T2. 

In the first interval the boundary conditions are : 

at x = 0, 8 = 6, 

at x = 1, aelax = 43 

for which a suitable finite transform (in which 8 
is replaced by 8) is developed in the Appendix as 

B(n) = i e(x) sin (il,x) dx; tan (&I) = -&/a 
0 

with inverse 

e(x) = 
x B(n) sin (1”~). c N = cd f cos2@,1) 

Nn ’ n 2cr . 
fl=1 

On multiplying equation (1) by sin (&,x) and 
integrating over (0, I) there results 

d8 L;Q Q. 
z+k=k (2) 

the solution of which is 

8exp(iEt/k) - g(n) = B,(exp(Azt/k) - l}/& (3) 

with 

&I) = i g(x) sin (2,x) dx 
0 

(4) 
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as the corresponding transform of the (as yet) 
unknown function g(x). 

In particular at t = T,, B = h(n) so that 

b) exp (Ai T,lk) - S(n) 

= %, {exp (A,” T,lW - 1)/4 (5) 

the inverse of Ii(n) being 

h(x) = 8, 
m (1 - exp (-$T,/k)} sin (J,x) c W” 

II=1 

+ c (B(n) exp ( - ni T’/k)) sin ($4 
N” 

(6) 
II=1 

Divide the range (0, I) into s equal intervals and 
let 

g(rVs) = g,, h(rl/s) = h, O<r<s 

then, using the trapezoidal rule to approximate 
to &n); 

J(n) = f: Klgjsin(l,jl/s) (7) 
j=l 

where 

us, j#s 
Kj = 

1/(2s), j = s. 

Equation (6) may now be written for 1 < i < s 

hi = 'i0 + jfll ‘ijsj (8) 

in which 

cio = 8, * (1 

c 

- exp ( - ni T,/k)) sin (A#) 

4% 
II=1 

and for 1 < j G s 

m 

cij = c $ {exp W~~,/k)~ 
n 

PI=1 

x sin (n,il/s) sin &jl/s), 

all these c, c’s being known. In matrix form 
equation (8) may be written 

h = co + cg. (9) 

In the second time interval T1 < t < T1 -t T, 
it is convenient to let 

z=t--T, 

so that, in the interval 0 < z 2 7” 

_=k?! a20 

ax2 a7 

with, at x = 0, e = 8,; 

at x = 1, aolax = 0; 

at r = 0, 0 = h(x); 

at z = T,, 8 = g(x). 

The appropriate finite transform (see Appendix) 
is 

e*fm) = j e(x) sin (y,x) dx, Y, = (2m + wd(21) 
0 

with inverse 

e(x) = (24 mzo e*(m) sin (7,x) 

which, when applied, yields 

YmOo =- 
k 

the solution to which is 

0*(m) exp (yiz/k) - h*(m) 

= 8, {exp (y$lk) - 1 )/Y,. v-0 

In particular when z = T,, O*(m) = g*(m), so 
that 

g*(m) = e,(l - exp (- Y~T,lk)}/Y, + 

+ h*(m) exp ( - y$T,lk) 

the inverse of which is 

280 Q?(x) = 7 
g) (1 c - ew (- yiT,lk)) sin (Y,x) 

Y, 
m=O 

02 

c h*(m) exp ( - yiT,/k) sin (7,x). (11) 

m=O 
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Again the trapezoidal rule is used to approx- 
imate to h*(m) in the form 

h*(m) = fj Xjhj sin (~~jZ/s) U2) 
j=l 

so that equation (11) may be written 

where 

gi = d, + i Dijhj 
j=l 

d =280 
i0 

1 c 

* l - exp (--$JP) sin (y 
In 

;Z,s) 

Ynl 
m=O 

andforl <j<s 

‘ij = (2/Z) mzO Kj exp (-yiTJk) 

x sin (~~~~/s~ sin (yJZ/s). 

In matrix form 

g = do + Dh (13) 

which, when used in conjunction with equation 
(9) gives 

g = [Z - DC]+ [DC, + do] 

h = [Z - CD-J-f [Cd, + co] 

where I is the unit matrix. 
The temperature distributions at the instants 

of closure and separation, g(x) and h(x) res- 
pectively are now known and since these provide 
the bounds between which the temperature 
varies, it is generally sufficient. However if the 
temperature at other times is required it can 
be obtained by finding &I), h*(m) from equations 
(7), (12) and then inverting equations (3), (10). 

EXAMPLE 

Sutton and Howard have extended their 
analogue work [l] to include a contact film so 
that it was natural to choose an example for 
which their results were available (although as 
yet unpublished [2]). Such an example is 
provided by the following data 

Z=4xlO-‘rn T, = T2 = 25s 

k = 0.2 x lo6 srne2 c1 = 5 x lo2 m-’ 

B. = I. 

Using s = 10 intervals the resulting temperature 
distributions g(x), h(x) are shown in Fig. 1. 

Length, m 

FIG. 1. 

An equivalent length Ii of cylinder may be 
defined as that in which, when its ends are held 
at temperature 8, and 0 for all time, the average 
heat flow from the source is the same as in the 
original cylinder. This equivalent length is then 
obtained in terms of the gradient of the time 
average, -M, (which can be obtained at the. 
fixed tem~rature end) as 

ii = 8,/M. 

In the example M is estimated from Fig. 1 as 
21 so that Zi is O-0476 m which is within 1 per cent 
of that obtained by the analogue method. 

If in some cases the g(x), h(x) distributions are 
separated even at the fixed temperature end 



then to obtain an accurate estimate it is necessary A homogeneous form of equation (14) is 

to calculate the time-average dist~bution using 
the equations already derived. Usually however (16) 

suffkient accuracy can be achieved by graphical 
~te~lation. 

which is solved subject to the corresponding homogeneous 

Since the method involves the inversion of an 
boundary conditions 

s x s matrix, where s is the number of sub-divi- (17) 

sions, limits will be placed on the value of s by 
Ag+Bcfi=O, at x = a, x = b. 

the computer available. This problem occurs Then, in the non-degenerate case, non-trivial solutions of 

only when the cylinder is long in the sense that equation (16) which satisfy equation (17) exist only when p 

g, h are identical over a large part (say >70 
takes one of a set f~,] of values (the eigenvalues) and to 

per cent) of the cylinder. If the temperature half- 
each pm there corresponds a unique #, (the eigenfunctions). 
This means that 

way along the cylinder is found to be 8, say, 
then the original problem is replaced with that 
of a cylinder half the length with the end held at 
8, and is then sub-divided into s parts. For very (1% 
long cylinders the process can be repeated. 

so that, on multiplying equations (18) and (19) by &,, 4, 

A~~O~~E~ respectively, subtracting and integrating over (a, b) 

The writers wish to thank Messrs. J, R Howard and 
A. E. Sutton for proposing the problem and for subsequent 
discussion. 
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APPENDIX where 

General Theory 
The construction of finite transforms is illustrated using a 
secord order ordinary differential equation which, without 

and this pair of equations defines a finite transform and Its 

loss of generality, can be expressed in the Sturm-Liouville 
inverse. 

form 
To solve equation (14) multiply it throughout by 4, 

k ?Wg + &)Y = f(x) 
( 1 

(14) 
and subtract equation (18) multiplied by y to give, on 
integration 

and this inhomogeneous equation is to be solved in the 
interval a C x s b subject to the inhomogeneous boundary 
conditions 

A($$ + Bfx)y = F(x), atx=u,x=b (15) 
ffom which srn) can be found and hence fix) on using the 
inverse given in equation (20). 

in which A and B are not zero together. 
Application to Present Case 

* To be published iu J. Heat Transfer. In this paper a transform is taken with respect to x and 
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the homogeneous equation corresponding to equation (1) is From the general theory 

if m = n it is easy to show that 
taking r(x) = 1, p = -i’; a = 0, b = 1. The general solution 
of equation (21) is 

$J = P sin i,x f Q cos a.u, P, Q constants. 

The corresponding homogeneous form of the boundary 
conditions for f? are included in those specified for 4 in 
equation (17). 

In the Interval 0 < t < T, 

Atx = 0, #=OsothatQ=O: 

so that 

I cos II + a sin II = 0, i.e. tan A1 = -i/r. 

The (positive) roots of this last equation are the eigenvalues 

%, < I, < 1, < 

1 

sin’ (&,,x) dx = 
al + cos2(d,l) 

2ci 
z N,. (22) 

Hence the transform pair is given by equation (20) with 

4, = sin (;i,$ and N, 

given by equation (22). 

In the interval T, < t < T, + T, 
At x = 0, #J = OsothatQ = 0; 

at .‘i = I, a#@ = 0 so that cos (3.i) = 0 

i.e 

1, = (2m + 1)7r/(21) 

are the eginvalues, the corresponding eigenfunctions are 
sin((2m + 1)71x/(21)), N, = 1/Z and hence the transform 
pair can be deduced from equation (20). 

SOLUTION QUASI-STATIONNAIRE DE PHENOMENES PERIODIQUES 

RCmn~Dans la recherche d’une solution quasi-stationnaire, des procedes semi-numeriques peuvent 
&tre avantageux. Une mbthode get&ale est iIIustr&e par un probleme d’&coulement de chaleur pour des 

surfaces en contact p&iodique. Lea rtsultats sent compares a ceux d’une autre etude. 

QUASISTATIONARE LGSUNG FUR PERIODISCHE VERANDERLICHE PHANOMENE 

Zusamm~fa~n~Bei der Losung eines quasistation~ren Zustandes k&men h~bnumerische Verfahren 
vorteilhaft sein. Solch eine allgemeine Methode wird an Hand eines W~rmeleitungsprobIems mit periodisch 

sich bertthrenden Oberflachen gezeigt. Die Ergebnisse werden mit einer Analogiestudie verghchen. 

KBASHCTAHMOHAPHOE PEIUEHHE IIEPRO@IYECKB H3MEHFIIGLC(MXCH 
IIPOHECCOB 

~EOT&~~-~~~ Haxo~~eH~~ ~Ba3~cTa~~oHap~o~o pementlrr gorge ~cr1om~10 upn- 
MeK~TbC~IgklC~eHHbfeMeTO~bl.O~AHE13T3KMXMeTO~OBIl~~H3CTPEIPYCTCIIH3IfpHMepepe~CHAFI 

33~ElyAOTenJKOO6MeHf? ~3pllOAMYeCKMKOHT3KTEIPYH)~EIX~OBepXHOCTe~.Pe3y~bTaTbICPaBHM- 

BBIOTCR CAL\HHBMH,nOJIYqeHHbIMII aH3JIOrOBbIM MBTOAOM. 


